Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Materials (Basel) ; 17(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38399167

ABSTRACT

The use of copper as an antimicrobial agent has a long history and has gained renewed interest in the context of the COVID-19 pandemic. In this study, the authors investigated the antimicrobial properties of an alloy composed of copper with a small percentage of silver (Cu-0.03% wt.Ag). The alloy was tested against various pathogens, including Escherichia coli, Staphylococcus aureus, Candida albicans, Pseudomonas aeruginosa, and the H1N1 virus, using contact exposure tests. Results showed that the alloy was capable of inactivating these pathogens in two hours or less, indicating its strong antimicrobial activity. Electrochemical measurements were also performed, revealing that the small addition of silver to copper promoted a higher resistance to corrosion and shifted the formation of copper ions to higher potentials. This shift led to a slow but continuous release of Cu2+ ions, which have high biocidal activity. These findings show that the addition of small amounts of silver to copper can enhance its biocidal properties and improve its effectiveness as an antimicrobial material.

2.
Pharmaceutics ; 16(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38399250

ABSTRACT

The potential emergence of zoonotic diseases has raised significant concerns, particularly in light of the recent pandemic, emphasizing the urgent need for scientific preparedness. The bioprospection and characterization of new molecules are strategically relevant to the research and development of innovative drugs for viral and bacterial treatment and disease management. Amphibian species possess a diverse array of compounds, including antimicrobial peptides. This study identified the first bioactive peptide from Salamandra salamandra in a transcriptome analysis. The synthetic peptide sequence, which belongs to the defensin family, was characterized through MALDI TOF/TOF mass spectrometry. Molecular docking assays hypothesized the interaction between the identified peptide and the active binding site of the spike WT RBD/hACE2 complex. Although additional studies are required, the preliminary evaluation of the antiviral potential of synthetic SS-I was conducted through an in vitro cell-based SARS-CoV-2 infection assay. Additionally, the cytotoxic and hemolytic effects of the synthesized peptide were assessed. These preliminary findings highlighted the potential of SS-I as a chemical scaffold for drug development against COVID-19, hindering viral infection. The peptide demonstrated hemolytic activity while not exhibiting cytotoxicity at the antiviral concentration.

3.
Eur J Med Chem ; 264: 115946, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38043491

ABSTRACT

Pteridine reductase 1 (PTR1) is a catalytic protein belonging to the folate metabolic pathway in Trypanosmatidic parasites. PTR1 is a known target for the medicinal chemistry development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. In previous studies, new nitro derivatives were elaborated as PTR1 inhibitors. The compounds showing a diamino-pyrimidine core structure were previously developed but they showed limited efficacy. Therefore, a new class of phenyl-, heteroaryl- and benzyloxy-nitro derivatives based on the 2-nitroethyl-2,4,6-triaminopyrimidine scaffold were designed and tested. The compounds were assayed for their ability to inhibit T. brucei and L. major PTR1 enzymes and for their antiparasitic activity towards T. brucei and L. infantum parasites. To understand the structure-activity relationships of the compounds against TbPTR1, the X-ray crystallographic structure of the 2,4,6-triaminopyrimidine (TAP) was obtained and molecular modelling studies were performed. As a next step, only the most effective compounds against T. brucei were then tested against the amastigote cellular stage of T. cruzi, searching for a broad-spectrum antiprotozoal agent. An early ADME-Tox profile evaluation was performed. The early toxicity profile of this class of compounds was investigated by measuring their inhibition of hERG and five cytochrome P450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4), cytotoxicity towards A549 cells and mitochondrial toxicity. Pharmacokinetic studies (SNAP-PK) were performed on selected compounds using hydroxypropyl-ß-cyclodextrins (50 % w/v) to preliminarily study their plasma concentration when administered per os at a dose of 20 mg/kg. Compound 1p, showed the best pharmacodynamic and pharmacokinetic properties, can be considered a good candidate for further bioavailability and efficacy studies.


Subject(s)
Antiprotozoal Agents , Chagas Disease , Trypanosoma brucei brucei , Trypanosoma cruzi , Humans , Structure-Activity Relationship , Antiprotozoal Agents/chemistry , Models, Molecular , Antiparasitic Agents/pharmacology , Chagas Disease/drug therapy
4.
Molecules ; 26(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443484

ABSTRACT

The COVID-19 outbreak has rapidly spread on a global scale, affecting the economy and public health systems throughout the world. In recent years, peptide-based therapeutics have been widely studied and developed to treat infectious diseases, including viral infections. Herein, the antiviral effects of the lysine linked dimer des-Cys11, Lys12,Lys13-(pBthTX-I)2K ((pBthTX-I)2K)) and derivatives against SARS-CoV-2 are reported. The lead peptide (pBthTX-I)2K and derivatives showed attractive inhibitory activities against SARS-CoV-2 (EC50 = 28-65 µM) and mostly low cytotoxic effect (CC50 > 100 µM). To shed light on the mechanism of action underlying the peptides' antiviral activity, the Main Protease (Mpro) and Papain-Like protease (PLpro) inhibitory activities of the peptides were assessed. The synthetic peptides showed PLpro inhibition potencies (IC50s = 1.0-3.5 µM) and binding affinities (Kd = 0.9-7 µM) at the low micromolar range but poor inhibitory activity against Mpro (IC50 > 10 µM). The modeled binding mode of a representative peptide of the series indicated that the compound blocked the entry of the PLpro substrate toward the protease catalytic cleft. Our findings indicated that non-toxic dimeric peptides derived from the Bothropstoxin-I have attractive cellular and enzymatic inhibitory activities, thereby suggesting that they are promising prototypes for the discovery and development of new drugs against SARS-CoV-2 infection.


Subject(s)
Crotalid Venoms/chemistry , Dimerization , Papain/antagonists & inhibitors , Peptides/chemistry , Peptides/pharmacology , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Molecular Docking Simulation , Papain/chemistry , Papain/metabolism , Peptides/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Conformation , SARS-CoV-2/drug effects
5.
Int J Parasitol Drugs Drug Resist ; 13: 107-120, 2020 08.
Article in English | MEDLINE | ID: mdl-32688218

ABSTRACT

Ergosterol biosynthesis inhibitors, such as posaconazole and ravuconazole, have been proposed as drug candidates for Chagas disease, a neglected infectious tropical disease caused by the protozoan parasite Trypanosoma cruzi. To understand better the mechanism of action and resistance to these inhibitors, a clone of the T. cruzi Y strain was cultured under intermittent and increasing concentrations of ravuconazole until phenotypic stability was achieved. The ravuconazole-selected clone exhibited loss in fitness in vitro when compared to the wild-type parental clone, as observed in reduced invasion capacity and slowed population growth in both mammalian and insect stages of the parasite. In drug activity assays, the resistant clone was above 300-fold more tolerant to ravuconazole than the sensitive parental clone, when the half-maximum effective concentration (EC50) was considered. The resistant clones also showed reduced virulence in vivo, when compared to parental sensitive clones. Cross-resistance to posaconazole and other CYP51 inhibitors, but not to other antichagasic drugs that act independently of CYP51, such as benznidazole and nifurtimox, was also observed. A novel amino acid residue change, T297M, was found in the TcCYP51 gene in the resistant but not in the sensitive clones. The structural effects of the T297M, and of the previously described P355S residue changes, were modelled to understand their impact on interaction with CYP51 inhibitors.


Subject(s)
14-alpha Demethylase Inhibitors/pharmacology , Drug Resistance, Multiple/genetics , Sterol 14-Demethylase/genetics , Trypanosoma cruzi , Animals , Cell Line , Chagas Disease/drug therapy , Genes, Protozoan , Mutation , Nitroimidazoles/pharmacology , Thiazoles/pharmacology , Triazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/genetics , Trypanosoma cruzi/growth & development
6.
Molecules ; 25(11)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486239

ABSTRACT

High genetic and phenotypic variability between Leishmania species and strains within species make the development of broad-spectrum antileishmanial drugs challenging. Thus, screening panels consisting of several diverse Leishmania species can be useful in enabling compound prioritization based on their spectrum of activity. In this study, a robust and reproducible high content assay was developed, and 1280 small molecules were simultaneously screened against clinically relevant cutaneous and visceral species: L. amazonensis, L. braziliensis, and L. donovani. The assay is based on THP-1 macrophages infected with stationary phase promastigotes and posterior evaluation of both compound antileishmanial activity and host cell toxicity. The profile of compound activity was species-specific, and out of 51 active compounds, only 14 presented broad-spectrum activity against the three species, with activities ranging from 52% to 100%. Notably, the compounds CB1954, Clomipramine, Maprotiline, Protriptyline, and ML-9 presented pan-leishmanial activity, with efficacy greater than 70%. The results highlight the reduced number of compound classes with pan-leishmanial activity that might be available from diversity libraries, emphasizing the need to screen active compounds against a panel of species and strains. The assay reported here can be adapted to virtually any Leishmania species without the need for genetic modification of parasites, providing the basis for the discovery of broad spectrum anti-leishmanial agents.


Subject(s)
Leishmaniasis/drug therapy , Animals , Antiprotozoal Agents/therapeutic use , Drug Evaluation, Preclinical , Humans , Leishmania/drug effects , Leishmania/pathogenicity , Leishmaniasis, Visceral/drug therapy , Maprotiline/chemistry , Mice , Protriptyline/chemistry , Species Specificity , THP-1 Cells
7.
Eur J Med Chem ; 183: 111676, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31542713

ABSTRACT

Leishmaniasis, a major health problem worldwide, has a limited arsenal of drugs for its control. The appearance of resistance to first- and second-line anti-leishmanial drugs confirms the need to develop new and less toxic drugs that overcome spontaneous resistance. In the present study, we report the design and synthesis of a novel library of 38 flavonol-like compounds and their evaluation in a panel of assays encompassing parasite killing, pharmacokinetics, genomics and ADME-Toxicity resulting in the progression of a compound in the drug discovery value chain. Compound 19, 2-(benzo[b]thiophen-3-yl)-3-hydroxy-6-methoxy-4H-chromen-4-one, exhibited a broad-spectrum activity against Leishmania spp. (EC50 1.9 µM for Leishmania infantum, 3.4 µM for L. donovani, 6.7 µM for L. major), Trypanosoma cruzi (EC50 7.5 µM) and T. brucei (EC50 0.8 µM). Focusing on anti-Leishmania activity, compound 19 challenge in vitro did not select for resistance markers in L. donovani, while a Cos-Seq screening for dominant resistance genes identified a gene locus on chromosome 36 that became ineffective at concentrations beyond EC50. Thus, compound 19 is a promising scaffold to tackle drug resistance in Leishmania infection. In vivo pharmacokinetic studies indicated that compound 19 has a long half-life (intravenous (IV): 63.2 h; per os (PO): 46.9 h) with an acceptable ADME-Toxicity profile. When tested in Leishmania infected hamsters, no toxicity and limited efficacy were observed. Low solubility and degradation were investigated spectroscopically as possible causes for the sub-optimal pharmacokinetic properties. Compound 19 resulted a specific compound based on the screening against a protein set, following the intrinsic fluorescence changes.


Subject(s)
Antiprotozoal Agents , Flavonols , Leishmania/drug effects , Leishmaniasis/drug therapy , Phosphorylcholine/analogs & derivatives , Thiophenes , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cricetinae , Drug Evaluation, Preclinical , Drug Resistance/drug effects , Flavonols/chemical synthesis , Flavonols/chemistry , Flavonols/pharmacology , Genomics , Humans , Phosphorylcholine/chemistry , Phosphorylcholine/pharmacology , Thiophenes/chemical synthesis , Thiophenes/chemistry , Thiophenes/pharmacology
8.
SLAS Discov ; 24(7): 755-765, 2019 08.
Article in English | MEDLINE | ID: mdl-31180789

ABSTRACT

The current methodologies used to identify promising new anthelmintic compounds rely on subjective microscopic examination of worm motility or involve genetic modified organisms. We describe a new methodology to detect worm viability that takes advantage of the differential incorporation of the fluorescent molecular marker propidium iodide and the 2,1,3-benzothiadiazole core, which has been widely applied in light technology. The new assay developed could be validated using the "Pathogen Box" library. By use of this bioassay, it was possible to identify three molecules with activity against Caenorhabditis elegans that were previously described as effective in in vitro assays against other pathogens, such as Schistosoma mansoni, Mycobacterium tuberculosis, and Plasmodium falciparum, accelerating the identification of molecules with anthelmintic potential. The current fluorescence-based bioassay may be used for assessing C. elegans viability. The described methodology replaces the subjectivity of previous assays and provides an enabling technology that is useful for rapid in vitro screens of both natural and synthetic compound libraries. It is expected that the results obtained from these robust in vitro screens would select the most effective compounds for follow-up in vivo experimentation with pathogenic helminths.


Subject(s)
Anthelmintics/pharmacology , Caenorhabditis elegans/drug effects , Drug Discovery/methods , Fluorescent Dyes/chemistry , Parasitic Sensitivity Tests/methods , Thiadiazoles/chemistry , Animals , Kinetics , Molecular Structure , Optical Imaging/methods
9.
ACS Infect Dis ; 5(7): 1105-1114, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31012301

ABSTRACT

Cycloguanil is a known dihydrofolate-reductase (DHFR) inhibitor, but there is no evidence of its activity on pteridine reductase (PTR), the main metabolic bypass to DHFR inhibition in trypanosomatid parasites. Here, we provide experimental evidence of cycloguanil as an inhibitor of Trypanosoma brucei PTR1 (TbPTR1). A small library of cycloguanil derivatives was developed, resulting in 1 and 2a having IC50 values of 692 and 186 nM, respectively, toward TbPTR1. Structural analysis revealed that the increased potency of 1 and 2a is due to the combined contributions of hydrophobic interactions, H-bonds, and halogen bonds. Moreover, in vitro cell-growth-inhibition tests indicated that 2a is also effective on T. brucei. The simultaneous inhibition of DHFR and PTR1 activity in T. brucei is a promising new strategy for the treatment of human African trypanosomiasis. For this purpose, 1,6-dihydrotriazines represent new molecular tools to develop potent dual PTR and DHFR inhibitors.


Subject(s)
Oxidoreductases/antagonists & inhibitors , Proguanil/chemistry , Triazines/chemical synthesis , Trypanocidal Agents/chemical synthesis , Trypanosoma brucei brucei/enzymology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Structure , Oxidoreductases/chemistry , Proguanil/pharmacology , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Triazines/chemistry , Triazines/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects
10.
J Med Chem ; 62(8): 3989-4012, 2019 04 25.
Article in English | MEDLINE | ID: mdl-30908048

ABSTRACT

2-Amino-benzo[ d]thiazole was identified as a new scaffold for the development of improved pteridine reductase-1 (PTR1) inhibitors and anti-trypanosomatidic agents. Molecular docking and crystallography guided the design and synthesis of 42 new benzothiazoles. The compounds were assessed for Trypanosoma brucei and Leishmania major PTR1 inhibition and in vitro activity against T. brucei and amastigote Leishmania infantum. We identified several 2-amino-benzo[ d]thiazoles with improved enzymatic activity ( TbPTR1 IC50 = 0.35 µM; LmPTR1 IC50 = 1.9 µM) and low µM antiparasitic activity against T. brucei. The ten most active compounds against TbPTR1 were able to potentiate the antiparasitic activity of methotrexate when evaluated in combination against T. brucei, with a potentiating index between 1.2 and 2.7. The compound library was profiled for early ADME toxicity, and 2-amino- N-benzylbenzo[ d]thiazole-6-carboxamide (4c) was finally identified as a novel potent, safe, and selective anti-trypanocydal agent (EC50 = 7.0 µM). Formulation of 4c with hydroxypropyl-ß-cyclodextrin yielded good oral bioavailability, encouraging progression to in vivo studies.


Subject(s)
Antiprotozoal Agents/chemistry , Benzothiazoles/chemistry , Enzyme Inhibitors/chemistry , Leishmania major/enzymology , Oxidoreductases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Trypanosoma brucei brucei/enzymology , Animals , Antiprotozoal Agents/metabolism , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Benzothiazoles/metabolism , Benzothiazoles/pharmacology , Benzothiazoles/therapeutic use , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Half-Life , Leishmania major/drug effects , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Oxidoreductases/metabolism , Protozoan Proteins/metabolism , Structure-Activity Relationship , Trypanosoma brucei brucei/drug effects , Trypanosomiasis/drug therapy , Trypanosomiasis/pathology
11.
SLAS Discov ; 24(3): 346-361, 2019 03.
Article in English | MEDLINE | ID: mdl-30784368

ABSTRACT

According to the World Health Organization, more than 1 billion people are at risk of or are affected by neglected tropical diseases. Examples of such diseases include trypanosomiasis, which causes sleeping sickness; leishmaniasis; and Chagas disease, all of which are prevalent in Africa, South America, and India. Our aim within the New Medicines for Trypanosomatidic Infections project was to use (1) synthetic and natural product libraries, (2) screening, and (3) a preclinical absorption, distribution, metabolism, and excretion-toxicity (ADME-Tox) profiling platform to identify compounds that can enter the trypanosomatidic drug discovery value chain. The synthetic compound libraries originated from multiple scaffolds with known antiparasitic activity and natural products from the Hypha Discovery MycoDiverse natural products library. Our focus was first to employ target-based screening to identify inhibitors of the protozoan Trypanosoma brucei pteridine reductase 1 ( TbPTR1) and second to use a Trypanosoma brucei phenotypic assay that made use of the T. brucei brucei parasite to identify compounds that inhibited cell growth and caused death. Some of the compounds underwent structure-activity relationship expansion and, when appropriate, were evaluated in a preclinical ADME-Tox assay panel. This preclinical platform has led to the identification of lead-like compounds as well as validated hits in the trypanosomatidic drug discovery value chain.


Subject(s)
Drug Discovery/methods , Trypanocidal Agents/analysis , Trypanocidal Agents/pharmacology , Trypanosomiasis/drug therapy , Biological Products/chemistry , Humans , Structure-Activity Relationship , Trypanocidal Agents/therapeutic use
12.
Eur J Med Chem ; 163: 649-659, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30562700

ABSTRACT

Chagas disease is a neglected tropical disease (NTD) caused by the protozoan parasite Trypanosoma cruzi and is primarily transmitted to humans by the feces of infected Triatominae insects during their blood meal. The disease affects 6-8 million people, mostly in Latin America countries, and kills more people in the region each year than any other parasite-born disease, including malaria. Moreover, patient numbers are currently increasing in non-endemic, developed countries, such as Australia, Japan, Canada, and the United States. The treatment is limited to one drug, benznidazole, which is only effective in the acute phase of the disease and is very toxic. Thus, there is an urgent need to develop new, safer, and effective drugs against the chronic phase of Chagas disease. Using a QSAR-based virtual screening followed by in vitro experimental evaluation, we report herein the identification of novel potent and selective hits against T. cruzi intracellular stage. We developed and validated binary QSAR models for prediction of anti-trypanosomal activity and cytotoxicity against mammalian cells using the best practices for QSAR modeling. These models were then used for virtual screening of a commercial database, leading to the identification of 39 virtual hits. Further in vitro assays showed that seven compounds were potent against intracellular T. cruzi at submicromolar concentrations (EC50 < 1 µM) and were very selective (SI > 30). Furthermore, other six compounds were also inside the hit criteria for Chagas disease, which presented activity at low micromolar concentrations (EC50 < 10 µM) against intracellular T. cruzi and were also selective (SI > 15). Moreover, we performed a multi-parameter analysis for the comparison of tested compounds regarding their balance between potency, selectivity, and predicted ADMET properties. In the next studies, the most promising compounds will be submitted to additional in vitro and in vivo assays in acute model of Chagas disease, and can be further optimized for the development of new promising drug candidates against this important yet neglected disease.


Subject(s)
Chagas Disease/drug therapy , Drug Discovery , Quantitative Structure-Activity Relationship , Trypanosoma cruzi/drug effects , Drug Evaluation, Preclinical/methods , Humans , Trypanocidal Agents/chemistry
13.
Eur J Med Chem ; 146: 423-434, 2018 Feb 25.
Article in English | MEDLINE | ID: mdl-29407968

ABSTRACT

Basing on a library of thiadiazole derivatives showing anti-trypanosomatidic activity, we have considered the thiadiazoles opened forms and reaction intermediates, thiosemicarbazones, as compounds of interest for phenotypic screening against Trypanosoma brucei (Tb), intracellular amastigote form of Leishmania infantum (Li) and Trypanosoma cruzi (Tc). Similar compounds have already shown interesting activity against the same organisms. The compounds were particularly effective against T. brucei and T. cruzi. Among the 28 synthesized compounds, the best one was (E)-2-(4-((3.4-dichlorobenzyl)oxy)benzylidene) hydrazinecarbothioamide (A14) yielding a comparable anti-parasitic activity against the three parasitic species (TbEC50 = 2.31 µM, LiEC50 = 6.14 µM, TcEC50 = 1.31 µM) and a Selectivity Index higher than 10 with respect to human macrophages, therefore showing a pan-anti-trypanosomatidic activity. (E)-2-((3'.4'-dimethoxy-[1.1'-biphenyl]-3-yl)methyle ne) hydrazinecarbothioamide (A12) and (E)-2-(4-((3.4-dichlorobenzyl)oxy)benzylidene)hydrazine carbothioamide (A14) were able to potentiate the anti-parasitic activity of methotrexate (MTX) when evaluated in combination against T. brucei, yielding a 6-fold and 4-fold respectively Dose Reduction Index for MTX. The toxicity profile against four human cell lines and a panel of in vitro early-toxicity assays (comprising hERG, Aurora B, five cytochrome P450 isoforms and mitochondrial toxicity) demonstrated the low toxicity for the thosemicarbazones class in comparison with known drugs. The results confirmed thiosemicarbazones as a suitable chemical scaffold with potential for the development of properly decorated new anti-parasitic drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Chagas Disease/drug therapy , Thiosemicarbazones/pharmacology , Trypanosoma/drug effects , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Dose-Response Relationship, Drug , Humans , Macrophages/drug effects , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry
14.
ChemMedChem ; 13(7): 678-683, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29451361

ABSTRACT

Protozoan infections caused by Plasmodium, Leishmania, and Trypanosoma spp. contribute significantly to the burden of infectious diseases worldwide, causing severe morbidity and mortality. The inadequacy of available treatments calls for cost- and time-effective drug discovery endeavors. To this end, we envisaged the triazole linkage of privileged structures as an effective drug design strategy to generate a focused library of high-quality compounds. The versatility of this approach was combined with the feasibility of a phenotypic assay, integrated with early ADME-tox profiling. Thus, an 18-membered library was efficiently assembled via Huisgen cycloaddition of phenothiazine, biphenyl, and phenylpiperazine scaffolds. The resulting 18 compounds were then tested against seven parasite strains, and counter-screened for selectivity against two mammalian cell lines. In parallel, hERG and cytochrome P450 (CYP) inhibition, and mitochondrial toxicity were assessed. Remarkably, 10-((1-(3-([1,1'-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-5-yl)methyl)-10H-phenothiazine (7) and 10-(3-(1-(3-([1,1'-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-4-yl)propyl)-10H-phenothiazine (12) showed respective IC50 values of 1.8 and 1.9 µg mL-1 against T. cruzi, together with optimal selectivity. In particular, compound 7 showed a promising ADME-tox profile. Thus, hit 7 might be progressed as an antichagasic lead.


Subject(s)
Antiprotozoal Agents/pharmacology , Small Molecule Libraries/pharmacology , Triazoles/pharmacology , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/toxicity , Cell Line, Tumor , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/toxicity , ERG1 Potassium Channel/metabolism , Humans , Leishmania/drug effects , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Potassium Channel Blockers/chemical synthesis , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/toxicity , Rats , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/toxicity , Triazoles/chemical synthesis , Triazoles/chemistry , Triazoles/toxicity , Trypanosoma/drug effects
15.
F1000Res, v. 7, 1730, ago. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4114

ABSTRACT

Chikungunya fever is an emerging disease and a significant public health problem in tropical countries. Recently reported outbreaks in Brazil in 2015 drew attention to the need to develop prevention and treatment options, as no antiviral chemotherapy or vaccines are currently available for this disease. Two strategies have been proved to accelerate the discovery of new anti-infectives: phenotypic screening and drug repurposing. Phenotypic screening can support the fast interrogation of compounds without the need for a pre-validated drug target, which is not available for the chikungunya virus (CHIKV) and has the additional advantage of facilitating the discovery of antiviral with novel mechanism of action. Drug repurposing can save time and resources in drug development by enabling secondary uses for drugs that are already approved for human treatment, thus precluding the need for several of the mandatory preclinical and clinical studies necessary for drug approval. A phenotypic screening assay was developed by infecting the human hepatoma Huh-7 cells with CHIKV 181/25 and quantifying infection through indirect immunofluorescence. The compound 6-azauridine was used as a positive control drug. The screening assay was validated by testing a commercial library of 1,280 compounds, including FDA-approved drugs, and used to screen a panel of broad-spectrum antiviral compounds for anti-CHIKV activity. A high content assay was set up in Huh-7 cells-infected with CHIKV. The maximum rate of infection peaked at 48 hours post-infection, after which the host cell number was greatly reduced due to a strong cytopathic effect. Assay robustness was confirmed with Z’-factor values >0.8 and high correlation coefficient between independent runs, demonstrating that the assay is reliable, consistent and reproducible. Among tested compounds, sofosbuvir, an anti-hepatitis C virus drug, exhibited good selectivity against CHIKV with an EC50 of 11 µM, suggesting it is a promising candidate for repurposing.

16.
Eur J Med Chem ; 141: 138-148, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29031061

ABSTRACT

Crassiflorone is a natural product with anti-mycobacterial and anti-gonorrhoeal properties, isolated from the stem bark of the African ebony tree Diospyros crassiflora. We noticed that its pentacyclic core possesses structural resemblance to the quinone-coumarin hybrid 3, which we reported to exhibit a dual-targeted inhibitory profile towards Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH) and Trypanosoma cruzi trypanothione reductase (TcTR). Following this basic idea, we synthesized a small library of crassiflorone derivatives 15-23 and investigated their potential as anti-trypanosomatid agents. 19 is the only compound of the series showing a balanced dual profile at 10 µM (% inhibitionTbGAPDH = 64% and % inhibitionTcTR = 65%). In phenotypic assay, the most active compounds were 18 and 21, which at 5 µM inhibited Tb bloodstream-form growth by 29% and 38%, respectively. Notably, all the newly synthesized compounds at 10 µM did not affect viability and the status of mitochondria in human A549 and 786-O cell lines, respectively. However, further optimization that addresses metabolic liabilities including solubility, as well as cytochromes P450 (CYP1A2, CYP2C9, CYP2C19, and CYP2D6) inhibition, is required before this class of natural product-derived compounds can be further progressed.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Quinones/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma cruzi/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Humans , Models, Molecular , Molecular Structure , NADH, NADPH Oxidoreductases/metabolism , Parasitic Sensitivity Tests , Quinones/chemical synthesis , Quinones/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/growth & development , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/growth & development
17.
ACS Omega ; 2(9): 5666-5683, 2017 Sep 30.
Article in English | MEDLINE | ID: mdl-28983525

ABSTRACT

Pteridine reductase-1 (PTR1) is a promising drug target for the treatment of trypanosomiasis. We investigated the potential of a previously identified class of thiadiazole inhibitors of Leishmania major PTR1 for activity against Trypanosoma brucei (Tb). We solved crystal structures of several TbPTR1-inhibitor complexes to guide the structure-based design of new thiadiazole derivatives. Subsequent synthesis and enzyme- and cell-based assays confirm new, mid-micromolar inhibitors of TbPTR1 with low toxicity. In particular, compound 4m, a biphenyl-thiadiazole-2,5-diamine with IC50 = 16 µM, was able to potentiate the antitrypanosomal activity of the dihydrofolate reductase inhibitor methotrexate (MTX) with a 4.1-fold decrease of the EC50 value. In addition, the antiparasitic activity of the combination of 4m and MTX was reversed by addition of folic acid. By adopting an efficient hit discovery platform, we demonstrate, using the 2-amino-1,3,4-thiadiazole scaffold, how a promising tool for the development of anti-T. brucei agents can be obtained.

18.
Bioorg Med Chem Lett ; 27(11): 2459-2464, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28434763

ABSTRACT

Leishmaniasis are infectious diseases caused by parasites of genus Leishmania that affect affects 12 million people in 98 countries mainly in Africa, Asia, and Latin America. Effective treatments for this disease are urgently needed. In this study, we present a computer-aided approach to investigate a set of 32 recently synthesized chalcone and chalcone-like compounds to act as antileishmanial agents. As a result, nine most promising compounds and three potentially inactive compounds were experimentally evaluated against Leishmania infantum amastigotes and mammalian cells. Four compounds exhibited EC50 in the range of 6.2-10.98µM. In addition, two compounds, LabMol-65 and LabMol-73, exhibited cytotoxicity in macrophages >50µM that resulted in better selectivity compared to standard drug amphotericin B. These two compounds also demonstrated low cytotoxicity and high selectivity towards Vero cells. The results of target fishing followed by homology modeling and docking studies suggest that these chalcone compounds could act in Leishmania because of their interaction with cysteine proteases, such as procathepsin L. Finally, we have provided structural recommendations for designing new antileishmanial chalcones.


Subject(s)
Antiprotozoal Agents/pharmacology , Chalcones/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Leishmania infantum/drug effects , Nitrofurans/pharmacology , Piperazines/pharmacology , Piperidines/pharmacology , Amphotericin B/pharmacology , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Chalcones/chemical synthesis , Chalcones/chemistry , Chlorocebus aethiops , Computer Simulation , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Databases, Factual , Drug Discovery , Humans , Molecular Docking Simulation , Nitrofurans/chemical synthesis , Nitrofurans/chemistry , Piperazines/chemical synthesis , Piperazines/chemistry , Piperidines/chemical synthesis , Piperidines/chemistry , Structure-Activity Relationship , Vero Cells
19.
Molecules ; 22(3)2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28282886

ABSTRACT

Flavonoids have previously been identified as antiparasitic agents and pteridine reductase 1 (PTR1) inhibitors. Herein, we focus our attention on the chroman-4-one scaffold. Three chroman-4-one analogues (1-3) of previously published chromen-4-one derivatives were synthesized and biologically evaluated against parasitic enzymes (Trypanosoma brucei PTR1-TbPTR1 and Leishmania major-LmPTR1) and parasites (Trypanosoma brucei and Leishmania infantum). A crystal structure of TbPTR1 in complex with compound 1 and the first crystal structures of LmPTR1-flavanone complexes (compounds 1 and 3) were solved. The inhibitory activity of the chroman-4-one and chromen-4-one derivatives was explained by comparison of observed and predicted binding modes of the compounds. Compound 1 showed activity both against the targeted enzymes and the parasites with a selectivity index greater than 7 and a low toxicity. Our results provide a basis for further scaffold optimization and structure-based drug design aimed at the identification of potent anti-trypanosomatidic compounds targeting multiple PTR1 variants.


Subject(s)
Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Chromans/chemistry , Chromans/pharmacology , Oxidoreductases/antagonists & inhibitors , Antiparasitic Agents/chemical synthesis , Binding Sites , Chromans/chemical synthesis , Enzyme Activation/drug effects , Inhibitory Concentration 50 , Leishmania major/drug effects , Leishmania major/enzymology , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Oxidoreductases/chemistry , Protein Binding , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/enzymology
20.
Eur J Med Chem ; 128: 202-212, 2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28189084

ABSTRACT

A library of 16 4-substituted 2-(1H-pyrrolo[3,2-c]pyridin-2-yl)propan-2-ols 17-32 has been synthesized for use in biological testing against Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. The 4-substituted 2-(1H-pyrrolo[3,2-c]pyridin-2-yl)propan-2-ols 17-32 were subjected to biological testing to evaluate their efficacy against intracellular Trypanosoma cruzi (Y strain) amastigotes infecting U2OS human cells, with benznidazole as a reference compound. The assay was performed in duplicate (two independent experiments) and submitted to High Content Analysis (HCA) for determination of trypanocidal activity. Three of the tested compounds presented relatively high trypanocidal activity (19, 22 and 29), however severe host cell toxicity was observed concomitantly. Chemical optimization of the highly active compounds and the synthesis of more compounds for biological testing against Trypanosoma cruzi will be required to improve selectivity and so that a structure-activity relationship can be generated to provide a more insightful analysis of both chemical and biological aspects.


Subject(s)
Chagas Disease/drug therapy , Pyridines/chemistry , Pyridines/chemical synthesis , Pyridines/pharmacology , Pyrroles/chemistry , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cells, Cultured , Chagas Disease/parasitology , Humans , Models, Molecular , Molecular Structure , Nitroimidazoles/pharmacology , Parasitic Sensitivity Tests , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...